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Abstract 

New, finite and exact relationships between products of 
two normalized structure factors, with coefficients 
which are a function of the squared moduli of structure 
factors, are presented. The equations allow new linear 
relationships between the cosine and sine of triple-phase 
invariants to be set up. The meaning of the new 
equations is discussed in connexion with the direct 
calculation of cosines of triple-phase invariants and the 
results show, for simple one-dimensional model struc- 
tures, that it is possible to obtain exact solutions. 

Introduction 

This paper is closely related to two previous ones 
(Navaza & Silva, 1979; Silva, Tate & Woolfson, 1981), 
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which will be hereafter referred to as papers A and B 
respectively. In paper A, by means of vector algebra, 
various relationships between E's  were derived, some of 
them finite and exact. Paper B deals with a new 
equation involving products of E 's  which leads to a 
linear relation between the cosines of triple-phase 
invariants. One of the results of the present paper is 
concerned with an equation similar to that derived in 
paper B, but using in its derivation an extension of the 
algebra of paper A. 

The main equation derived in paper B is 

~. X(Ht)E(h I - -  H/) E(h 2 + H/) = ~,E(hl)E(h2) , (I) 
l 

where the X's  satisfy 

~. X(H/) exp [2niH t. (r t -- rl)] = 2, for i,j = 1, . . . ,  N, 

(2) 
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r s being atomic positions. Then, for (1) to be valid the 
summation in (2) must be a constant ;l for all 
interatomic vectors and therefore the X's  were cal- 
culated as a Fourier transform of a modified Patterson 
function where all interatomic peaks were brought to a 
constant level ~. 

On the other hand, if in (1) h 2 = - H  m and hi = Hm 
are chosen, it reads 

~ X(Ht)IE(Ht-- Hm)12 : ,~, I E ( H m ) I  2, (3)  
1 

which means that the X's  could also be determined as a 
solution of this linear system. The I EI2's in the 
summation are elements of a Karle-Hauptman matrix 
(Karle & Hauptman, 1950) and therefore the rank of 
the system is equal to the number of different 
interatomic vectors (Goedkoop, 1950). Therefore only 
a finite number of X's  can be calculated from (3), 
which strongly suggests that in spite of (1) being in 
principle an infinite summation, since the X's  are 
calculated from (2) by means of a Fourier transform, it 
might be reduced to a finite summation. In fact the 
main results of the present paper are finite linear 
relationships between products of two E ' s  with 
coefficients depending only upon moduli of E's .  They 
are used for setting up linear systems of equations 
whose solutions are the cosine and sine of triple-phase 
invariants. 

In paper A the problem of finding a finite 'linear' 
relationship between single E ' s  was considered (but 
unfortunately in that case the coefficients depend upon 
phases and therefore the relationship is not really 
linear). In trying to find an equation between products 
of E ' s  a formalism very similar to that followed in 
paper A will be used and so some of its ideas will be 
summarized. (The notation is similar to the notation of 
papers A and B, except that in the zj 's the normaliza- 
tion constant is included.) 

For each h in reciprocal space, define a vector V(h) 
in a complex N-dimensional vector space ~¢f, as 
follows, 

N 
V(h)=  Y exp (2mh. rj)ej, 

j = l  

where the inner products between base vectors ej satisfy 
the condition (ej I e/) = Jijzj. It follows that the inner 
product of two vectors V is [V(h)lV(k)] --- E(k - I!). 
The vector V(0) can be expanded in a new base defined 
by the vectors {V(hq), q = 1 , . . . ,  N}, that is 

N 
V(0) = Z C*V(hq), 

q=l 

and its inner products with a set of vectors {V(kp), p = 
1 . . . .  , N} lead to 

N 
E(kp)  = ~ C q E ( k p -  hq), p = 1 , . . . , N .  (6) 

q= l  

This linear system defines the coefficients C.. Note that 
if {kq, q = 1 , . . . ,  N} -- {hp, p = 1 , . . . ,  N}~the E's  on 
the right-hand side of (6) are elements of a Karle-  
Hauptman matrix. Finally, the inner product of (5) 
with an arbitrary vector V(m) gives 

N 
E(m) = Y CqE(m-- hq), (6') 

q=l  

which is one of the main equations of paper A and it 
has also been found by other authors in the context of 
probabilistic theories as a regression equation (de 
Rango, Tsoucaris & Zelwer, 1974; Podjarny, Yonath 
& Traub, 1976). This equation means that any E can 
be written as a finite sum of N other E's,  with a fixed set 
of coefficients depending upon moduli and phases of 
several E's. 

Tensor formalism 

The relationship between single E's,  equation (6'), was 
established with a simple vector algebra in an 
N-dimensional vector space. The present objects of 
interest are products of two E's  and they can be related 
with a similar algebra but in a tensor product space. 

Choose the vectors {V(hq), q = 1, . . . ,  N} as a basis 
of ..4:. The tensor product ...4/®...,/: is an N 2- 
dimensional vector space with bases {e I ® ej; i , j  = 
1, . . . ,  N} and {V(hp) ® V(hq);  p ,  q = 1 , . . . ,  N}. 
Defining in ~/" ® J//', W(h, k) = V(h) ® V(--k), and 
using (4), it is clear that 

W(h, k) ---- V(h)® V(--k) 

N 
= Z exp [ 2z~i (h. r t -- k .  rj)] e I ® ej. (7) 

l,J 

Defining et® e j= eli, it follows that their inner products 
are 

( e i j l e s t ) =  zlzj(~ls(~jt  (8 )  

(4) and therefore 
N 

[W(I, m)lW(h,k)] = Y exp [-2zci( l . r~-  m.b)]  
l,J, s, t 

x exp [2ni(h. r s -- k. rt)] (etjl est) 
N 

= Y exp [2ni(h -- I). r l] 
l,y 

× exp [ - 2 n : i ( k -  m). rfl zf./ 

(5) = E(h- l)E(m- k). (9) 

This means that the inner product of two elements 
belonging to ~f" ® f is equal to a product of two E's. 
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(10) 

In particular, note that 

[W(k,k)lW(h,h)] = IE(h--  k)l ~- 

and 

[W(k, k)l W(h,m)] = E(h -- k) E(k- -  m). (11) 

In the Appendix it is proved that the vectors of the 
form W(h, h) lie in ~9: which is a subspace of J / :  ® J / :  
whose dimension is at most N ( N  - 1) + 1. In fact it is 
equal to the number of different interatomic vectors. 
The symbol S(m) will be used for the vectors in Y ,  that 
is 

S(m) = W(m, m), (12) 

and now with this change of notation (10) and (11) can 
be written 

[S(k)lS(h)] = I E ( h -  k)l 2 (13) 

[S(k)lW(h, m)] -- E ( h -  k ) E ( k -  m). (14) 

In S ~ the vector S(0) can be expanded as a linear 
combination of the base vectors S(hp), 

M 

S(0)= Z firS(h,), (15) 
p=I 

where M is equal to the dimension of 6:. The inner 
products of this equation with a set of vectors {S(kq), 
q = I,..., M} are, according to (13), 

M 

IE(kq) 12= E fp IE(hu--kq) 12, q =  1 . . . .  ,M. (16) 
p = l  

This linear system defines the fl's and therefore they do 
not depend upon phases. Note again that if {kp, p = 
1 , . . . ,  M} -- {hq, q = 1, . . . .  M}, the IEI2's on the 
right-hand side of (16) are elements of a Karle-- 
Hauptman matrix. 

The inner product of (15) with an arbitrary element 
of~¢/-®~ : ,  namely W(h, k), is, according to (14), 

M 

E(--h)E(k)= E fipE(hp--h)E(k--hp), (17) 
p = l  

which is formally similar to equation (1) (the main 
equation of paper B), but with coefficients which 
guarantee its finite character. Multiplying (17) by 
E(h -- k) it becomes 

M 

E(--h)E(k)E(h -- k) = E fip E(h, -- h) 
p=l 

× E ( k - -  lap) E(h -- k). (18) 

This is a linear, finite and exact relationship among 
triple products with coefficients depending only upon 
IEI2's. On the other hand, if in (17) h = 0, it can be 
written 

1 M 

E ( k ) -  E(0) ,__~ f i r E ( k - -  hp)E(hr) (19) 

(Navaza, 1974), which can be regarded as a weighted 
form of a Sayre-Hughes equation (Sayre, 1952; 
Hughes, 1953), but again this is an exact equation with 
a finite number of terms. There is also some similarity 
between (19) and equation (5) of Rothbauer (1976)but 
only in the sense that both are valid for structures with 
equal and unequal atoms. It is interesting to note, 
particularly in connexion with the last equation, that 
the f ' s  are real and they can be negative. 

Another useful relationship between E's  can be 
obtained by means of the vector 

N 

T =  ~ e,, (20) 
l=l 

which lies in Y .  As such it can be expanded in the base 
{S(hp),p = 1 , . . . ,M},  that is 

M 

T= ~ y,S(h,). (21) 
p=l 

Since [S(hr)IT] = Z]=I z] = 1, it follows that the system 
of equations defining the coefficients y is 

M 

y. ~,~ i E ( h ~ - - h , ) 1 2 =  1, q =  1 , . . . , M .  (22) 
p = l  

On the other hand, noting that 

N 

[TlW(h,k)] = ~ z} exp [2n/(h-- k).rj] = E2(h-- k), 

j=1 (23) 

and taking the inner product of W(h, k) with both sides 
of (21), an equation similar to (17) is obtained, that is 

M 

~. yp E(h -- hp) E(hp -- k) = E2(h-- k), (24) 
p=l 

where the resemblance to the Sayre-Hughes equation 
is more striking. If we multiply both sides of (24) by 
E(k -- h) and considering structures with equal atoms, 
it becomes 

M 

y r, e(h - h,) E(h, - k) E(k-- h) 
p=l 

1 
= ~ I E ( h -  k)l 2, (25) 

v ' N  

which expresses I EI 2 as a linear combination of 
triple-phase invariants. 



A. M. SILVA AND J. NAVAZA 661 

C a l c u l a t i o n s  a n d  d i s c u s s i o n  

In an attempt to gain an understanding of the new 
equations, (18) and (25), direct calculations of the 
cosines of triple-phase invariants for one-dimensional 
model structures were performed. For those cal- 
culations which have much in common with those 
reported in paper B, only the main differences will be 
mentioned. 

A system of linear equations for cosines was set up 
with (18). There are two important differences between 
these equations and the similar equations of paper B: 
firstly, the coefficients, fl's, are calculated directly in 
reciprocal space by means of (16); and secondly, 
because this way of calculating the fl's allows the 
summation in (18) t o  be performed on any set of 
indices, it is possible to build a system with, formally, 
more equations than unknowns. The resulting 
equations are always exactly satisfied regardless of the 
atomic positions. The number of terms in each equation 
can be very large since it is the number of different 
interatomic vectors; hence, a favourable situation is 
when there are a considerable number of super- 
positions in the Patterson function. This is really a 
notable fact since the failure of many direct-methods 
procedures is often blamed on these superpositions. 

In attempting to solve the system of equations for the 
cosines it was found, as in paper B, that the system is 
singular and it is necessary to eliminate some un- 
knowns (e.g. those with the smallest moduli) in order to 
solve for the others. The results for these cosines are 
only marginally better than those reported in paper B 
which could therefore be taken as representative 
examples of the results obtained with (18). The main 
differences are that with (18) the results are equally 
good for any distribution of atoms and that the 
relationship between the rank of the system and the 
quality of the solution is clearer. 

It was found that for all the three-atom structures 
considered the complete system was singular, but after 
eliminating one unknown the solution for the rest was 
almost perfect; that is, the co-rank of the system is 
equal to one. When the number of atoms increases it 
seems that the co-rank also increases and more 
unknowns have to be eliminated. The system to be 
solved is then less exact and the quality of the solution 
deteriorates. 

When similar procedures were applied, but with 
equation (25), it was found that the linear systems were 
not singular. Therefore, it was possible to obtain exact 
solutions for the cosine of the triple-phase invariants for 
linear structures with up to five atoms (this limit being 
imposed by the dimension of the systems). As is evident 
from (25) the use of the procedure is restricted to the 
case of equal atoms. But of course the main limitation 
is that the size of the system increases very rapidly with 
the number of atoms. The freedom in choosing the 
vectors h and k can be used to construct the system of 

equations with the smallest dimension. For linear 
structures this choice seems evident, but we have no 
answer for the three-dimensional case. 

At any rate, it is, to our knowledge, the first time that 
the triple-phase invariants could be exactly determined 
by solving a linear system of equations involving 
IEI2'S. 

We wish to thank Dr M. M. Dodson, Dr Y. 
Mauguen, Dr C. Tate, Dr G. Tsoucaris and Professor 
M. M. Woolfson for very helpful discussions and 
criticisms. AMS acknowledges financial support by the 
Consejo National de Investigaciones Cientificas y 
T6cnicas de la Repdblica Argentina. 

A P P E N D I X  

The vectors S(h)=  W(h,h) = V(h)® V(--h) = V(h)® 
V*(h) lie in a vector subspace Y o f X ® J ¢ / ' ,  generated 
by vectors x ® x*, x in ~4/. Writing Xj = exp (27u~. rj), 
the vectors S(h) can be expressed as 

N 
S(h)=  V(h)® V*(h) = ~ exp [27ffh(r I - rj)] e t®e  j 

l,J 

= Z x, x7 eu 
t,j 

= Z el, + Z Xl  X ~  elj 
t tl 

t<J 

+ Z X i X T e l j .  
U 

l>J 

It follows that the vectors S(h) lie in a vector subspace 
of ~ ® ~ generated by the 1 + N ( N  - 1) linearly 
independent vectors {(Yi eu), el2, e21, . . . ,  eN-1,N, 
eN.N_~}. Then the dimension of Y is at most 1 + N ( N  
- -  1). Alternatively, as [S(hp)lS(hq)] = IE(hp-hq) l  2, 
the metric tensor of Y is a Karle-Hauptman matrix 
whose elements are I EI2's. The rank of this matrix and 
therefore the dimension of Y equals the number of 
different interatomic vectors, which is at most equal to 
1 + N ( N - -  1). 
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